Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Genome Biol ; 20(1): 171, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31446895

RESUMO

BACKGROUND: CRISPR-Cas9 gene-editing technology has facilitated the generation of knockout mice, providing an alternative to cumbersome and time-consuming traditional embryonic stem cell-based methods. An earlier study reported up to 16% efficiency in generating conditional knockout (cKO or floxed) alleles by microinjection of 2 single guide RNAs (sgRNA) and 2 single-stranded oligonucleotides as donors (referred herein as "two-donor floxing" method). RESULTS: We re-evaluate the two-donor method from a consortium of 20 laboratories across the world. The dataset constitutes 56 genetic loci, 17,887 zygotes, and 1718 live-born mice, of which only 15 (0.87%) mice contain cKO alleles. We subject the dataset to statistical analyses and a machine learning algorithm, which reveals that none of the factors analyzed was predictive for the success of this method. We test some of the newer methods that use one-donor DNA on 18 loci for which the two-donor approach failed to produce cKO alleles. We find that the one-donor methods are 10- to 20-fold more efficient than the two-donor approach. CONCLUSION: We propose that the two-donor method lacks efficiency because it relies on two simultaneous recombination events in cis, an outcome that is dwarfed by pervasive accompanying undesired editing events. The methods that use one-donor DNA are fairly efficient as they rely on only one recombination event, and the probability of correct insertion of the donor cassette without unanticipated mutational events is much higher. Therefore, one-donor methods offer higher efficiencies for the routine generation of cKO animal models.


Assuntos
Alelos , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Animais , Blastocisto/metabolismo , Análise Fatorial , Feminino , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos Knockout , Microinjeções , Análise de Regressão , Reprodutibilidade dos Testes
3.
PLoS One ; 12(6): e0178768, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28609472

RESUMO

A recently published research article reported that the extreme halophile archaebacterium Natronobacterium gregoryi Argonaute enzyme (NgAgo) could cleave the cellular DNA under physiological temperature conditions in cell line and be implemented as an alternative to CRISPR/Cas9 genome editing technology. We assessed this claim in mouse zygotes for four loci (Sptb, Tet-1, Tet-2 and Tet-3) and in the human HEK293T cell line for the EMX1 locus. Over 100 zygotes were microinjected with nls-NgAgo-GK plasmid provided from Addgene and various concentrations of 5'-phosphorylated guide DNA (gDNA) from 2.5 ng/µl to 50 ng/µl and cultured to blastocyst stage of development. The presence of indels was verified using T7 endonuclease 1 assay (T7E1) and Sanger sequencing. We reported no evidence of successful editing of the mouse genome. We then assessed the lack of editing efficiency in HEK293T cell line for the EMX1 endogenous locus by monitoring the NgAgo protein expression level and the editing efficiency by T7E1 assay and Sanger sequencing. We reported that the NgAgo protein was expressed from 8 hours to a maximum expression at 48 hours post-transfection, confirming the efficient delivery of the plasmid and the gDNA but no evidence of successful editing of EMX1 target in all transfected samples. Together our findings indicate that we failed to edit using NgAgo.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas Argonautas/metabolismo , Edição de Genes/métodos , Natronobacterium/enzimologia , Zigoto/metabolismo , Animais , Proteínas Arqueais/genética , Proteínas Argonautas/genética , Sequência de Bases , Western Blotting , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Feminino , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Natronobacterium/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Espectrina/genética , Espectrina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção/métodos
4.
Mol Plant ; 8(1): 68-82, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25578273

RESUMO

Carotenoids are mostly C40 terpenoids, a class of hydrocarbons that participate in various biological processes in plants, such as photosynthesis, photomorphogenesis, photoprotection, and development. Carotenoids also serve as precursors for two plant hormones and a diverse set of apocarotenoids. They are colorants and critical components of the human diet as antioxidants and provitamin A. In this review, we summarize current knowledge of the genes and enzymes involved in carotenoid metabolism and describe recent progress in understanding the regulatory mechanisms underlying carotenoid accumulation. The importance of the specific location of carotenoid enzyme metabolons and plastid types as well as of carotenoid-derived signals is discussed.


Assuntos
Carotenoides/metabolismo , Plantas/metabolismo , Plastídeos/metabolismo , Hemiterpenos/metabolismo , Compostos Organofosforados/metabolismo , Xantofilas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...